Zero-order considerations for SMTF design

- •Total length ~70 meters (from cathode to high energy dump)
 - •Gun + 2 booster cavities: **6.15 m**
 - •3.9 GHz acc cavity + bunch comp. + matching section: 10.14 m
 - •Main linac [TTF-2 (eventually three Acc modules)]: 39.15 m
 - •High energy diagnostics section: 14.90 m

total length (from cathode) = 70.3 m

Injector

- •Possibility to generate asymmetric emittance beam (ideal to study emittance growth in one-plane in cryomodules)
- •Incorporate diagnostics + room for proper instrumentation (e.g. for HOM measurement)
- •Possibility of an off-line beamline for other test (CKM-based bunch length meas., or other advanced instrumentation/beam physics experiments)

Generation and acceleration section

•First set of simulations assume only two cavities (1.3 GHz)

Q (nC)

•Generate 40-50 MeV "frozen" beam with controllable parameters (emittance +Twiss param.) for a wide range of charges (optimized with generic optimizer sddsoptimize)

Kinetic energy

z from cathode (m)

- •Cavity in three modules operated at 25 MV/m average acc. Gradient
- γ ~1400 and $\delta\gamma/\gamma$ ~0.3% (with present initial bunch length)

Beam envelopes

•Transverse envelope < 1mm (in non-dispersive section)

Beta-functions

High energy diagnostics section

- •Momentum (mean and rms) both single bunch and multi-bunch
- •Transverse and longitudinal emittances
- •Test area for new ILC diagnostics development

Momentum (mean and rms) measurements

- •Spectrometer with three BPMs: 2 upstream 1 downstream to remove incoming transverse position jitter
- •Triplet (QD6,QD7,QD8) used to minimized β -function at position/profile monitor located in dispersive section

Transverse emittance measurements

- •Fast emittance measurement using the three-screen technique (60 deg β phase advance between screens -- matching provided by upstream quad quinplet)
- •Slower/more precise measurement using standard quadrupole scans in conjunction with tomographic methods

